The Colorado River Water Shortage: Agricultural Implications

Yuma Fresh Vegetable Association

12 May 2022

Jeffrey C. Silvertooth

Professor and Extension Specialist – Agronomy / Soil Science Environmental Science Department

The Great State of Arizona

COLLEGE OF AGRICULTURE AND LIFE SCIENCES COOPERATIVE EXTENSION

COLLEGE OF AGRICULTURE AND LIFE SCIENCES ARIZONA

Limiting Factors in Desert Agriculture

Water Bio-available Nitrogen Plant Genetics

Global Freshwater Use

70% - Agriculture Primarily in arid & semi-arid regions

Arid/Semi-Arid Regions

~ 40% of total crop production
~ 60-65% of grain production
~ 40-45% of global population

Arizona Agriculture - Water

 Arizona Ag utilizes ~ 70% of freshwater, \$23.3B value (AZ GDP of \$334.03B)

~ 7% of AZ GDP

- ~ 70% of Arizona is *diverted* to agriculture
- Arizona animal and crop production industries

 Food and fiber products for Arizona, nation, and world.

Critics of Arizona Agriculture

"Despite the storied history and outsize impact of agriculture, this industry must be scrutinized. Currently, the Arizona GDP is about \$300 billion and agriculture contributes less than 1% to that figure. Agriculture employs about 1% of Arizona workers while consuming 36% of our land and about 80% of our water. The thirsty and water intensive land uses that may have helped our state grow and flourish historically are now out of step with our disappearing water resources brought by drought, overuse, and climate change." Person, Ariz. Capital Times, 10/8/21

Note: \$23B/\$300B ~ 7.66%

Watersheds of the U.S.

Colorado River Watershed

Colorado River Watershed

- 1,450 mile river channel
- 244,000 sq. mile drainage
- greatest elevation drop in North America
- budgeted volume = 15 million acre-ft/year
 - Columbia River: 192 million acreft/year
 - Mississippi River: 400 million acre-ft/year
- covers portions of 7 states and 2 nations
- 40M people
- 5.5M acres of farmland

COLLEGE OF AGRICULTURE AND LIFE SCIENCES ARIZONA ARIZONA

John Wesley Powell

"All the great values of this territory have ultimately to be measured to you in acre feet".

John Wesley Powell, Montana Constitutional Convention, 1889.

COLLEGE OF AGRICULTURE AND LIFE SCIENCES COOPERATIVE EXTENSION

Colorado River Use/Allocation (Totals)

State	Allocation	Use*	Difference	
	Million acre-feet			
Wyoming	0.840	0.498	+0.342	
Colorado	3.105	2.359	+0.746	
New Mexico	0.675	0.548	+0.127	
Utah	1.380	0.997	+0.383	
Nevada	0.300	0.177	+0.123	
Arizona	2.840	2.294	+0.546	
California	4.403	5.271	-0.868	
(Mexico)	1.500	1.542	-0.042	
Totals	15.043	13.686		

*Annual flow has averaged 14 million acre-feet since 1930. Evaporation losses (reservoirs) approximately 2 million acre-feet/year.

Colorado River Apportionment

Colorado River

Average flow between 2000 and 2018

~ 12.4MAF

16 % lower than the 1906-2017 average of 14.8MAF/year

Rio Colorado – Sonora/Baja California/Arizona

2022 - Tier 1 Shortage

CAP Reductions

To learn more, please visit: www.cap-az.com/colorado-river-shortage

Shortage Preparedness Briefing

2022 Reduction to CAP Users After DCP Mitigation

28

DCP Tier Reductions

Lake Level (fas)	Tier Level	Reduction	Total Reduction
1,075	1	512 K AF	512 K AF
1,050	2a	80 K AF	592 K AF
1,045	2b	48 K AF	640 K AF
1,025	3	480 K AF	1.2 M AF

DCP = Drought Contingency Plan fas = feet above sea level on Lake Mead KAF = thousand acre-feet MAF = million acre-feet

90% probability Tier 2a 2022 (July) 25% probability Tier 3 2023

Doctrine of Prior Appropriations

First person to take water from a source for beneficial use, has the right to continue to use that quantity of water for that purpose

Remaining water may be used by others, so long as their use does not impinge on the rights of previous users

Doctrine was developed in the Western United States, and differs from riparian water rights, which are applied in the rest of the U.S.

Four essential elements consist of: intent, diversion, beneficial use, and priority

The Yuma Project – Laguna Dam

- Passage of the Reclamation Act of 1902
- 10 May 1904 The Yuma Project was authorized
 - one of the earliest irrigation projects for the new Reclamation Service.
 - Construction of Laguna
 Dam began in July 1905
 and was completed in
 March 1909.

Prior Appropriation: First in time, first in right.... In times of shortage, burden is NOT shared equally.

Lake Mead End-of-Month Elevations

(30 traces)

March 2022 DROA Probable Minimum 24-Month Study

Lake Mead

End of CY 2022 Projections:

Probable Min: 1,047.10 feet

Lake Mead

End of CY 2023 Projections:

Probable Min: 1,020.63 feet Tier 3

(30 traces)

Lake Powell End-of-Month Elevations

CRMMS Projections from February and March 2022

March 2022 Most Probable 24-Month Study

March 2022 DROA Probable Minimum 24-Month Study

Lake Powell – End of CY2022

Most Probable: 3,520.08 ft. (23% full)

Probable Min: 3,505.84 ft.

If the lake falls to 3,490 ft., there would not be enough water to operate the generators in Glen Canyon Dam

 provides power to Wyoming, Utah, Colorado, New Mexico, Arizona, Nevada, and Nebraska.

Lake Powell – End of CY2023

Most Probable: 3,533.37 ft. (27% full)

Probable Min: 3,499.31 ft.

If the lake falls to 3,490 ft., there would not be enough water to operate the generators in Glen Canyon Dam

 provides power to Wyoming, Utah, Colorado, New Mexico, Arizona, Nevada, and Nebraska.

BoR Lake Powell – 21 April 2022

- Proposed to reduce the risk of damage to the hydropower turbines at Lake Powell:
 - 7.48 MAF to 7MAF reduction in flow to Lake Mead in fiscal 2022.
 - Also serves to protect water deliveries to Page and the Navajo Nation.

BoR Lake Powell – 3 May 2022

- **500KAF** of water will come from Flaming Gorge Reservoir, located approximately 455 river miles upstream of Lake Powell.
- 480KAF will be left in Lake Powell by reducing Glen Canyon Dam's annual release volume from 7.48MAF to 7.0MAF, as outlined in the 2007 Interim Guidelines that control operations of Glen Canyon Dam and Hoover Dam.

Percent of Traces with Event or System Condition - Lake Mead February 2022 CRMMS-ESP Projections

Operating Condition	Pool Elevation	AZ Reduction & Contribution
Surplus	≥ 1,145'	0 KAF
Normal	> 1,090' and < 1,145'	0 KAF
Tier 0	> 1,075' and ≤ 1,090'	192 KAF
Tier 1	≥ 1,050' and ≤ 1,075'	512 KAF
Tier 2a	> 1,045' and < 1,050'	592 KAF
Tier 2b	≥ 1,025' and ≤ 1,045'	640 KAF
Tier 3	< 1,025'	720 KAF

Water & Arizona Agriculture

Good Stewards of Arizona Land & Water Resources

Irrigated Systems

DLLEGE OF AGRICULTURE ND LIFE SCIENCES

Decades of Improvements

- Yields and efficiencies of production have increased.
 - Higher yields
 - Highest yields and quality of crops in the world.
 - Less land utilized
 - Less irrigation water utilized per acre
 - Less crop inputs, e.g. pesticides & fertilizers
 - Increased diversification of crops and cropping systems.
 - Including extensive seed production

Ag Water Use – U.S. 1950-2000

Trends in population and irrigation withdrawals, 1950-2000

Soil Water Balance

Soil Water Balance

Efficiency Objectives

• <u>Agronomic</u>

- Inputs and crop response

- Economic
 - Cost of production and net returns on the crop
- Environmental
 - Short-term impacts
 - Long-term impacts

Agriculture and The Great State of Arizona

COLLEGE OF AGRICULTURE AND LIFE SCIENCES COOPERATIVE EXTENSION

Irrigation Systems in Arizona

• Efficiency: ~ 50 – 100%

Depends on the system design and management

- Inefficient irrigation systems tend to have long runs, low flow turnouts, and a high degree of slope
- Fields that are level, with high flow turnouts, or drip systems tend to be most efficient
 - High efficiency is possible with sprinklers but not a certainty

Multiple Irrigation Systems

COLLEGE OF AGRICULTURE AND LIFE SCIENCES ARIZONA COOPERATIVE EXTENSION

Irrigation Systems for Salinity Management

Furrow Irrigation

v point of water application

Soil Salinity Lev

Low Medium High Extreme

Irrigation Water <u>Management</u>

Irrigator's Equation: Q x t = d x A

Q = the flow rate, in cubic feet per second (cfs);

- t = the set time or total time of irrigation (hours);
- d = the depth of water applied (inches)
- A = the area irrigated (acres).

Irrigation Water Management

Irrigator's Equation: Q x t = d x A

Solving for irrigation set time (t):

t = d x A / Q

Soil Texture & Water Holding Capacity

Textural class	Water holding capacity,
	inches/foot of soil
Coarse sand	0.25 - 0.75
Fine sand	0.75 - 1.00
Loamy sand	1.10 - 1.20
Sandy loam	1.25 - 1.40
Fine sandy loam	1.50 - 2.00
Silt Ioam	2.00 - 2.50
Silty clay loam	1.80 - 2.00
Silty clay	1.50- 1.70
Clay	1.20 - 1.50

Crop Water Demand & Management

• Crop Consumptive Use (CU)

- ET (evapotranspiration)

- Evaporation (soil) + Transpiration (crop)
- Describes the demand for irrigation how much to apply.
- Leaching requirement
 - Need to provide adequate soil leaching (salinity managment)
 - Irrigated crop production systems
 - Arid and semi-arid regions

Irrigation Water Management

Irrigator's Equation: Q x t = d x A

Solving for irrigation set time (t):

t = d x A / Q

Irrigation Management

Soil Water Balance

Soil Water Balance

Crop Water Demand & Management

- Crop Consumptive Use (CU)
 - ET (evapotranspiration)
 - Evaporation (soil) + Transpiration (crop)
 - Describes the demand for irrigation how much to apply.
- Leaching requirement
 - Need to provide adequate soil leaching (salinity managment)
 - Irrigated crop production systems
 - Arid and semi-arid regions

Salinity – Desert Agriculture

Salinity A Desert Agriculture Challenge

"Successful irrigation schemes in arid regions carry seeds of their own demise" (Gardner, 1985)

Example: ppm X 2.7 = Ibs./AF-water 700 ppm X 2.7 = 1,890 lbs. salt/AF X 5 AF-water = 9,450 lbs. salt/acre (4.7 T salt/acre)

Leaching Requirement Calculation (LR)

- electrical conductivity (EC)
 - EC for the water (EC_w)
 - Critical plant salinity tolerance (EC_e)
 - Development of salinity equilibrium

Salinity/Leaching Management

- Monitor water quality for salinity/sodicity
- Monitor soil salinity/sodicity
- Monitor crop response patterns
- Crop rotations
 - Variations in root system development
 - Irrigation management
 - Furrow, basin flood, sprinklers, etc.

Crop Production = Art + Science

Manage irrigation systems for efficiency & sustainability

Colorado River Watershed

Sustainable Systems for the Next Generations

Water is Life

Photo Credit: Jon Dinsmore

COLLEGE OF AGRICULTURE AND LIFE SCIENCES COOPERATIVE EXTENSION

You can't always get what you want But if you try sometimes, well, you just might find You get what you need

M. Jagger

